Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas
نویسندگان
چکیده
Magnetohydrodynamic sMHDd turbulence has been employed as a physical model for a wide range of applications in astrophysical and space plasma physics. This Colloquium reviews fundamental aspects of MHD turbulence, including spectral energy transfer, nonlocality, and anisotropy, each of which is related to the multiplicity of dynamical time scales that may be present. These basic issues are discussed based on the concepts of sweeping of the small scales by a large-scale field, which in MHD occurs due to effects of counterpropagating waves, as well as the local straining processes that occur due to nonlinear couplings. These considerations give rise to various expected energy spectra, which are compared to both simulation results and relevant observations from space and astrophysical plasmas.
منابع مشابه
Astrophysical Gyrokinetics: Basic Equations and Linear Theory
Magnetohydrodynamic (MHD) turbulence is encountered in a wide variety of astrophysical plasmas, including accretion disks, the solar wind, and the interstellar and intracluster medium. On small scales, this turbulence is often expected to consist of highly anisotropic fluctuations with frequencies small compared to the ion cyclotron frequency. For a number of applications, the small scales are ...
متن کاملAstrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisio...
متن کاملKinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Astrophysical Plasmas
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisio...
متن کاملCompressible Magnetohydrodynamic Turbulence: mode coupling, scaling relations, anisotropy, new regime and astrophysical implications
We present numerical simulations and explore scalings and anisotropy of compressible magnetohydrodynamic (MHD) turbulence. Our study covers both gas pressure dominated (high β) and magnetically dominated (low β) plasmas at different Mach numbers. In addition, we present results for superAlfvenic turbulence and discuss in what way it is similar to the subAlfvenic turbulence. We describe a techni...
متن کاملCompressible Magnetohydrodynamic Turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime, and astrophysical implications
We present numerical simulations and explore scalings and anisotropy of compressible magnetohydrodynamic (MHD) turbulence. Our study covers both gas pressure dominated (high β) and magnetic pressure dominated (low β) plasmas at different Mach numbers. In addition, we present results for superAlfvenic turbulence and discuss in what way it is similar to the subAlfvenic turbulence. We describe a t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004